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Abstract
Perceptual decision-making is the process of choosing
between two or more alternatives based on an evaluation
and integration of sensory information. Converging evidence
from electrophysiology, neuroimaging, and theoretical
modeling work suggests that the decision process relies on a
cascade of neural events. Sensory input is first encoded by
the neural modules selective to the choice alternatives before
it is passed on to a decision center, which compares the
sensory outputs in a noisy process of gradual accumulation
of evidence that ultimately leads to a decision. In this chapter
we start out with an introduction to the general principles
guiding perceptual decision-making. We then take a critical
turn to look beyond sensory information as the decisive
variable for the decision, and discuss additional factors that
interact with, and contribute to, the decision process. Spe-
cifically, we review the influence of the following factors:
prestimulus state, reward and punishment, speedeaccuracy
trade-off, learning and training, confidence, and neuro-
modulation. We show how these decision modulators can
exert their influence at various stages of processing, in line
with predictions derived from sequential-sampling models
of decision-making.

INTRODUCTION

Perceptual decision-making is the act of selecting one
option or course of action from a larger set of alterna-
tives on the basis of available sensory information [1].
This process has frequently been modeled using sequen-
tial sampling models, such as the well-known drift-
diffusion model [2], which assumes that the decision
formation hinges on a noisy (stochastic) accumulation
of incoming sensory information [3e6] (also see Chapter
12). More specifically, these computational accounts sug-
gest that perceptual decisions involve an integrative

mechanism whereby the difference in sensory evidence
supporting the alternatives accumulates over time to a
preset internal decision boundary, which ultimately de-
termines the choice (Fig. 11.1).

Correspondingly, several nonhuman primate (NHP)
electrophysiology studies have revealed patterns of
single-unit activity that are in line with this integrative
mechanism [7]. Using a visual motion direction-
discrimination task [random-dot kinematogram (RDK)
task], these studies revealed that, whereas sensory areas
responsive to motion direction [such as the middle tem-
poral area (MT)] encoded the amount of evidence for
each alternative, higher-level regions known to orches-
trate choice [such as the lateral intraparietal area (LIP),
the frontal eye fields, and the superior colliculus] accu-
mulated the evidence for the decision. Specifically, firing
rates of individual neurons in these areas built up grad-
ually over time at a rate proportional to the amount of
evidence for the decision (i.e., difficulty of the task),
eventually converging on a common firing level (deci-
sion boundary) as animals committed to a choice [7e9].

More recently, human studies using time-resolved
electroencephalography (EEG) signals were able to mea-
sure the process of evidence accumulation on the scalp
[10e12]. Philiastides et al. [11], using a visual binary
categorization task (e.g., is the stimulus a face or a
car/house), showed that population responses on the
scalp (with a broad centroparietal topography) can cap-
ture activity that builds up gradually over time with a
rate proportional to the amount of sensory evidence in
the stimulus (Fig. 11.2A). The buildup rate of this accu-
mulating activity was consistent with the properties of
a drift-diffusion-like process as characterized by compu-
tational modeling (i.e., EEG buildup rate correlated with
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drift rate in the model; Fig. 11.2B) and it was additionally
shown to predict participants’ choice accuracy as in the
NHP work described earlier (Fig. 11.2C).

Intriguingly, regions of the parietal and prefrontal
cortices were linked to this accumulating activity in
humans, via functional magnetic resonance imaging
(fMRI). A study by Ploran et al. [13] recorded the time
of recognition of noisy pictures that were revealed grad-
ually over the course of several seconds. During this
period the authors identified a gradual buildup in the

fMRI signal, peaking in correspondence with the time
of recognition in a set of regions, the inferior temporal,
frontal, and parietal regions. Similar patterns of activity
were also reported using a face/house categorization
task [14].

Heekeren et al. [15] directly tested whether a compar-
ison operation is also at work (as shown in Fig. 11.1)
using a similar face/house categorization task. A brain
region in the posterior portion of the left dorsolateral
prefrontal cortex (DLPFC) uniquely correlated with the
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FIGURE 11.1 Representation (left) and integration (right) of sensory evidence in perceptual decision-making. Sensory areas/neurons
encoding each of two decision alternatives (e.g., face/house or right/left motion) respond parametrically to the amount of evidence in the
stimulus. For example, face-responsive regions respond stronger to clear than to noisy images of faces and even less to images of houses.
Conversely, house-responsive regions respond stronger to clear than to noisy images of houses and even less to images of faces. The difference
signal between the two competing areas or groups of neurons is subsequently integrated over time in the decision process from a starting point (z)
toward one of two internally set decision boundaries (a or �b) representing the possible choices. The rate at which the evidence is accumulated
[drift rate (v) in the diffusion model of simple decision-making] is proportional to the amount of stimulus evidence. Adapted from Philiastides MG,

Heekeren HR. Spatiotemporal characteristics of perceptual decision making in the human brain. In: Dreher J-C, Tremblay L, editors. Handbook of reward and

decision making. Academic Press; 2009. p. 185e212.
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FIGURE 11.2 Evidence accumulation in human EEG recordings during a face/car categorization task. (A) Ramp-like activity consistent with a
process of evidence accumulation recorded on the surface of the scalp. As sensory evidence increases so does the buildup rate (slope) of the
evidence accumulation. Scalp topography depicts the spatial distribution of the accumulating activity. (B) The buildup rate of the EEG activity
correlates with drift rate estimates from a diffusion model analysis of individual subject behavioral responses. (C) The buildup rate of the
accumulating activity is predictive of participant’s choice accuracy, even after accounting for task difficulty. Adapted from Philiastides MG, Heekeren
HR, Sajda P. Human scalp potentials reflect a mixture of decision-related signals during perceptual choices. J Neurosci 2014;34:16877e89.
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difference between the output signals of face- and
house-responsive regions and it additionally predicted
behavioral performance in the categorization task. This
finding was replicated using a direction discrimination
task and two different response modalities (i.e., eyes
and hands) [16] and was shown to persist even when
the perceptual decision was fully decoupled from the
impending motor response [17].

Finally, Philiastides et al. [18] showed that hindering
activity in the left DLPFC with transcranial magnetic
stimulation resulted in behavioral impairments (relative
to sham stimulation) that were attributed to changes in
the efficiency of integration (drift rate) in a diffusion
model fit to the behavioral data. Taken together these
findings suggest that the left DLPFC plays a causal
role in the integration of the outputs of lower-level sen-
sory regions and uses a subtraction operation to
compute perceptual decisions.

It is noteworthy that similar findings have been re-
ported during decision-making in other domains (e.g.,
auditory [19,20] and somatosensory [21e23]), suggesting
that the process of sensory evidence accumulation sup-
porting perceptual decisions generalizes across sensory
modalities. Nonetheless, in addition to the sensory input,
decisions can also be affected by other factors (i.e., deci-
sion modulators), which have the capacity to influence
different processing stages along the decision stream as
highlighted in Fig. 11.1 (e.g., from early sensory encoding
to the decision formation itself). In this chapterwewill re-
view the role of the following factors on perceptual
decision-making: prestimulus state, reward and punish-
ment, speedeaccuracy trade-off, learning and training,
confidence, and neuromodulation.

FACTORS AFFECTING PERCEPTUAL
DECISION-MAKING

Prestimulus State

An important factor that can influence the course of
the decision process is the state of the neural activity
prior to any task-relevant sensory stimulation. For
example, a strong link has been observed between the
trial-to-trial fluctuations in prestimulus oscillatory activ-
ity and the behavioral outcome of the perceptual deci-
sion [24e27]. In one such study, Van Dijk et al. [27]
asked participants to perform a simple visual discrimi-
nation task, which involved detecting whether a
contrast difference was present in a target stimulus.
Magnetoencephalography (MEG) recordings showed
that spontaneous prestimulus oscillations in the alpha-
frequency band, within occipitoparietal areas, were
negatively correlated with subjects’ performance, such
that as alpha power increased, discrimination ability

decreased. Similar effects of prestimulus alpha activity
have been shown in other studies [24e26,28] and are
theorized to reflect variability in attentional processes
exerting top-downmodulatory influence on information
processing [29].

The temporal locus of this influence on the decision-
processing stream, however, remains an active topic of
debate. Some studies suggest that prestimulus alpha po-
wer exerts its influence on early sensory processing.
Mazaheri et al. [28] asked subjects to perform perceptual
discriminations in which, on some trials, auditory and
visual stimuli were presented simultaneously, with
only one of the stimuli, cued in advance, requiring a
perceptual judgment. On these trials, prestimulus alpha
power was suppressed in the early sensory regions rele-
vant to the target stimulus (i.e., early visual areas for vi-
sual stimuli and the supramarginal gyrus for auditory
stimuli) and enhanced in the region relevant to the dis-
tractor sensory modality. The authors proposed that
alpha activity might serve the role of gating or modu-
lating information flow to sensory areas.

A different study by Lou et al. [30] directly sought to
identify the temporal stage(s) of the decision process
likely to be affected by prestimulus alpha activity during
a face/car categorization task. Prestimulus alpha-band
power was negatively correlated with the magnitude
of an early EEG stimulus-discriminating component hy-
pothesized to reflect early sensory evidence encoding
[31e34], such that lower prestimulus alpha power was
associated with higher absolute value of the discrimi-
nant component (Fig. 11.3A). Conversely, no correlation
was found between prestimulus alpha power and a later
decision-related discriminating component.

There has also been evidence to suggest a later influ-
ence directly affecting the evidence accumulation stage
of the decision. Kelly and O’Connell [12] used an RDK
task and found that prestimulus alpha power correlated
positively with subjects’ response time and negatively
with the efficiency of decision formation, as indexed
by the buildup rate of a centroparietal positivity poten-
tial in the stimulus-aligned EEG signal [35]. Their results
are consistent with a top-down influence of prestimulus
attentional fluctuations on the decision, whereby lower
prestimulus alpha power (i.e., enhanced attention) leads
to a more efficient evidence accumulation in the post-
stimulus period.

Modulatory effects of prestimulus state on the
perceptual decision have also been linked to sponta-
neous prestimulus oscillatory activity in the gamma-
frequency band. Wyart and Tallon-Baudry [26] used a
visual detection (present/absent) task in which the loca-
tions of the stimuli were precued with partial validity on
each trial (i.e., the cues were correct on only 65% of the
trials). They found that gamma-band activity in the
lateral occipital cortex was predictive of subjects’
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choices, increasing for detected versus undetected re-
ports. The authors demonstrated that its perceptual
impact resembled a decision bias at stimulus onset,
thus making one response more likely than the other.
Moreover, this did not appear to be due to changes in
attentional focus, but rather to spontaneous predictions
about the upcoming stimulus, potentially biasing the
starting point of evidence accumulation.

Overall, it appears that variability in prestimulus ac-
tivity can play an important role in altering the course
of the decision, likely through top-down modulatory ef-
fects on information processing. It is possible that, at
least in some circumstances, these internal fluctuations
possess a volitional/adaptive component aimed at
maximizing reward/performance; however, when and
how these differ from spontaneous fluctuations remains
to be explored.

Reward and Punishment

In a natural environment, the ultimate aim of any
behavioral response is to try to maximize an organ-
ism’s utility function (i.e., maximize rewards or mini-
mize punishments) (also see Chapter 4). Value-based
decision-making in humans, especially in the context
of reinforcement learning and reward-related activity
in dopaminergic systems [36] (also see Chapter 2),
has already been studied extensively. Surprisingly,
however, less has been done to explore the potential ef-
fects of reward and punishment on perceptual
decision-making, whether on early encoding of sensory

information or on later decision-related processing and
action selection.

Weil et al. [37] collected fMRI data while subjects per-
formed an orientation discrimination task and were
given monetary rewards for correct decisions. Greater
rewards improved behavioral performance and
increased fMRI activity in areas of the reward network
(e.g., ventral striatum and orbitofrontal cortex). More
importantly, however, the authors found that positive
outcomes also led to increased activity in early visual
areas (e.g., V2 and V3) at the time of reward delivery
(presented auditorily) when no visual stimuli were be-
ing presented. Finally, rewarded trials led to improved
performance on the subsequent trial and enhanced vi-
sual activity contralateral to the judged stimulus. In a
related fMRI work, Schiffer et al. [38] used a face/house
categorization task in which subjects received monetary
rewards and punishments for correct and incorrect
choices, respectively. At the time of outcome delivery,
the authors found reward-predictive activity in visual
areas associated with faces (i.e., fusiform face area)
and houses (i.e., parahippocampal place area) when
subjects made face and house choices, respectively.
Not only these activations were dependent on the
perceptual decision, they also covaried with activity in
reward structures (e.g., ventral striatum), indicating an
interaction between the human reward network and
the early sensory cortex.

Similar results were obtained by Pleger et al. [39] in
the somatosensory domain. The authors used fMRI
and a tactile discrimination task in which subjects had
to compare the frequency of two successive tactile
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FIGURE 11.3 Influence of different modulators on perceptual decision-making during a face/car categorization task. (A) Prestimulus alpha
power influences the encoding of early sensory evidence, whereby lower prestimulus alpha leads to a more reliable poststimulus sensory
encoding. (Adapted from Lou B, et al. Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making. NeuroImage 2014;87:

242e51.) (B) Modulating the level of punishment associated with incorrect perceptual decisions affects the efficiency of evidence accumulation in
the decision, whereby higher punishment levels lead to a steeper rate of evidence integration. (Adapted from Blank H, et al. Temporal characteristics of
the influence of punishment on perceptual decision making in the human brain. J Neurosci 2013;33:3939e52.) (C) Choice confidence during perceptual
choices reflected in the process of decision formation, with more confident trials leading to a higher rate of evidence accumulation. (Adapted from

Gherman S, Philiastides MG. Neural representations of confidence emerge from the process of decision formation during perceptual choices. NeuroImage 2015;

106:134e43.)
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stimuli applied to the same finger. The task was per-
formed under different reward rates for each correct
trial. Higher rewards enhanced behavioral performance
and increased fMRI activity in both the primary somato-
sensory cortex (S1) and the ventral striatum. More
importantly, however, these authors demonstrated that
during reward delivery and in the absence of somato-
sensory stimulation, the S1 contralateral to the judged
finger was reactivated and this reactivation was propor-
tional to the amount of reward. Finally, they showed that
reward magnitude on a particular trial influenced re-
sponses on the subsequent trial, with better behavioral
performance and greater somatosensory responses for
higher rewards. Taken together the results presented
above clearly demonstrate that the systems involved in
valuation interact with early sensory systems. More spe-
cifically, in situations in which the value of outcomes de-
pends on decisions associated with different perceptual
representations, reward and punishment signals are
propagated back to sensory systems, in the form of a
“teaching signal” whereby they can shape early sensory
representations to optimize future choices and maxi-
mize reward.

In addition to the effects on the early sensory system,
more recent studies focused on the influence of reward
and punishment on the dynamics of the process of evi-
dence accumulation during the decision itself. In an
EEG study by Blank et al. [40] subjects performed a
face/car categorization task, during which the level of
punishment associated with incorrect choices changed
in a block-wise fashion (three levels: low, medium,
high). EEG activity discriminating between the three
levels of punishment appeared mostly late in the trial.
This activity exhibited a ramp-like response profile
(Fig. 11.3B) and had a spatial topography consistent
with the process of evidence accumulation defined
earlier (compare Fig. 11.2A with Fig. 11.3B). Crucially,
the buildup rate of this activity increased parametrically
with the amount of punishment (Fig. 11.3B) and it was
further predictive of the size of the behavioral improve-
ments induced by punishment across participants.
Finally, the trial-by-trial changes in prestimulus power
in the alpha and gamma bands were good predictors
of this accumulating activity, suggesting that different
decision modulators (here prestimulus state and pun-
ishment) can interact to shape perceptual decisions.
Similar results are obtained using manipulations of
reward magnitude. These findings indicate that reward
and punishment can exert a top-down influence (e.g.,
via attention and motivation) on the decision process it-
self, leading to more efficient integration of sensory
evidence.

In another study, Green et al. [41] had participants
perform an RDK task in blocks with identical duration
but different reward/punishment schedules. Behavioral

and diffusion modeling results indicated that subjects
adjusted their decision boundaries (i.e., controlled the
amount of accumulated evidence) to maximize the
reward rate, consistent with earlier computational
modeling work [42,43]. fMRI results from Green et al.
[41] indicated that these changes in the decision bound-
aries were achieved by adjusting the connectivity within
corticostriatal systems, responsible for accumulating
sensory evidence, and cerebellarestriatal systems,
responsible for temporal processing. These connectivity
patterns were strongest for those individuals who ob-
tained greater rewards by making greater adjustments
in their decision boundaries. Similarly, Domenech and
Dreher [44] showed decision boundary adjustments as
a function of prior knowledge and the predictability of
upcoming stimuli. These findings provide another
source of evidence that in perceptual decision-making,
reward and punishment can directly modulate the dy-
namics of the decision process itself.

Speed Versus Accuracy Trade-Off

The previous section offered evidence on how
reward maximization in perceptual decision-making
can be achieved by optimally adjusting the decision
boundaries in the process of evidence accumulation
to meet the payoff contingencies of the environment.
Within the framework of sequential sampling models
of decision-making, these boundary adjustments are
thought to implement a speedeaccuracy trade-off
(SAT) [45] (also see Chapter 12 for additional discus-
sion on SAT). More generally, SAT is considered a
mechanism by which a reasonable balance between
the competing demands of speed and accuracy can be
achieved. While the likelihood of making a correct de-
cision increases as information continues to accumulate
over time, delaying decisions to ensure they are
certainly correct may render them ineffective. Within
this framework, studies have started to look at how
SAT is implemented in the brain and how it influences
the process of decision formation.

In an fMRI study by Forstmann et al. using the RDK
task [46], subjects were instructed to increase either
speed or accuracy on individual trials. As expected, sub-
jects were fast but less accurate during the speed
compared to the accuracy instruction and computational
modeling analysis confirmed that this effect was driven
by a reduction in the distance between the decision
boundaries. fMRI analysis showed that the speed in-
struction was associated with increased activity (relative
to the accuracy instruction) in the striatum and the pre-
supplementary motor area, regions known to be
involved in voluntary motor planning (see also van
Maanen et al. [47]). Moreover, individual differences in
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the level of activation in these regions were correlated
with individual variations in the decision boundaries
estimated via a bounded-accumulation model. In a
follow-up structural connectivity study, Forstmann
et al. [48] provided additional evidence that decreases
in decision boundaries are likely to be mediated via
increased activation from cortex to striatum, releasing
the motor system from inhibition (striatal hypothesis),
rather than from decreased activation from cortex to
the subthalamic nucleus (STN hypothesis). This evi-
dence is consistent with a flexible mechanism of
response caution adjustment in accordance to environ-
mental (task) demands.

In a related study, using fMRI and the RDK task, Ivan-
off et al. [49] showed that, in addition to the results
described above, SAT also affected the activity of the
lateral prefrontal cortex in a region known to be
involved in evidence accumulation during the decision
process. More specifically, the authors showed that
emphasizing the speed rather than the accuracy of the
perceptual decision lowered the amount of evidence-
related activity in the lateral prefrontal cortex, consistent
with a reduction in the decision boundary. Interestingly,
this effect was not observed in sensory areas providing
the evidence for the decision (e.g., MT), suggesting
that SAT affects the dynamics of the decision process it-
self, rather than exerting an influence on early sensory
processing.

More recently, Wenzlaff et al. [50] provided additional
evidence on how the influence of SAT develops over
time using MEG. The authors used a face/house catego-
rization task and reported ramp-like activity consistent
with the process of evidence accumulation that was
modulated by SAT. Specifically, source analysis of this
activity showed that supplementary motor areas and
the medial precuneus increased their level of activation
in the speed compared to the accuracy instruction. In-
creases in activity in these regions correlated with a
reduction in the decision boundary (i.e., a negative cor-
relation) as estimated by a diffusion model applied to
the behavioral data, consistent with the results of the
fMRI studies described earlier [46,49]. In addition,
the authors reported that the level of activation in the
DLPFC correlated positively with the model’s boundary
parameters as in the aforementioned Ivanoff et al. fMRI
study [49].

Collectively, these neuroimaging studies offered
strong support that SAT is implemented by changes in
decision boundaries in (pre)motor and decision-related
brain structures. However, evidence from NHPs chal-
lenged this view and provided evidence for an alterna-
tive account [51,52]. For example, Hanks et al. [52]
found that during SAT, LIP neurons known to accumu-
late evidence for the decision did not exhibit a change in
their decision boundaries. Instead, during the speed

instruction these neurons showed an increased initial
firing rate (i.e., evidence-independent activation), ulti-
mately enabling the animal to make a decision on the ba-
sis of less information. In contrast to the human
neuroimaging results, these findings suggest that SAT
could be mediated by changes in the amount of
decision-related activity itself rather than through deci-
sion boundary adjustments.

Learning and Training

Another way to augment and optimize performance
during perceptual choices is through learning. More
specifically, training and experience are required to
induce long-lasting improvements in our ability to
make perceptual decisions based on ambiguous sen-
sory information. This phenomenon is commonly
referred to as perceptual learning [53] and though it
has been studied extensively, especially in early vision
[54,55], its effect on the decision-making process itself
remains less well explored. The traditional view on
the neural plasticity underlying learning has been
that the influence of training is on the early parts of
the perceptual system, such as in early visual cortex.
An alternative view, however, is that learning in the
context of perceptual decision-making can additionally
affect higher-level areas responsible for driving the de-
cision itself via enhanced cortical coupling with early
sensory cortex.

The traditional view has been corroborated by human
neuroimaging studies by Furmanski et al. [56], who
used fMRI to measure neural signals in primary visual
cortex before and after a month-long perceptual training
period in which subjects learned to detect oriented pat-
terns. They observed an increase in response in V1 that
correlated with improvements in behavioral perfor-
mance. Similarly, Jehee et al. [57] used an orientation
discrimination task that was performed daily over the
course of several weeks. They reported significant im-
provements in discrimination ability and corresponding
enhancement in neural activity along the early visual
areas (V1 to V4), albeit for only the trained orientations
and locations. Correspondingly, single-cell recordings
in NHPs by Yan et al. [58] showed that learning to
discriminate visual contours led to strengthening and
accelerating of neural responses in primary visual cor-
tex, and that these changes correlated highly with
behavioral performance.

Despite these results, evidence supporting the alter-
native view (i.e., late influences of learning on
decision-making) has also been provided. For
example, computational work [59] suggests that
perceptual improvements are mediated by higher-
level decision-related centers of the brain that learn to
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read out and reweight V1 inputs through training. In
related work, Li et al. [60] asked subjects to decide
whether a visually presented stimulus was radial or
concentric by comparing the external sensory input to
different internal decision criteria that they learned
through training with feedback on separate sessions.
After each training session, subjects performed the
categorization task during fMRI. The authors used
multivoxel pattern analysis of the fMRI signals to pre-
dict subjects’ behavioral choices, and showed that cate-
gory learning affects decision-related regions in frontal
and higher occipitotemporal brain regions implicated
in flexible adjustment of the decision criterion required
for the task. These effects were not observed in regions
responsible for early encoding of the stimulus or those
controlling motor preparation and execution. Collec-
tively, these studies provide evidence that perceptual
learning effects extend beyond the perceptual system
and can influence higher-level brain areas implicated
in the decision process itself.

This interpretation is further supported by experi-
ments in NHPs. Law and Gold [61] trained animals
over several sessions to discriminate the direction of vi-
sual motion in an RDK task while activity in areas MT
and LIP (thought to reflect the sites of sensory evidence
encoding and evidence accumulation, respectively) was
measured. The neurons in area LIP, but not MT, showed
increased responsiveness to the decision evidence as a
function of learning, reflected in steeper evidence-
accumulation slopes. Correspondingly, there was a
correlation between the neural responsiveness of these
neurons and the performance on the task. This study
provides evidence that perceptual learning does not
change how sensory information is represented in the
brain, but rather how sensory representations are inter-
preted, particularly by higher areas in the brain involved
in decision-making.

In a follow up study, the same authors [62] showed
that their results could be explained in terms of a rein-
forcement learning (RL) mechanism [63], whereby the
connections between sensory neurons and the decision
process are strengthened via a reward prediction error,
gradually enhancing the readout of relevant information
and improving perceptual sensitivity. This explanation
was corroborated by work in humans by Kahnt et al.
[64], who trained subjects on an orientation discrimina-
tion task over the course of 4 days. The authors
explained behavioral improvements using an RL model
that updated the decision evidence on every trial in
accordance with a prediction error signal. Using fMRI,
the authors showed that stimulus orientation was
encoded in both early visual and higher cortical areas
in lateral parietal and medial prefrontal cortices. How-
ever, only activity in the medial prefrontal cortex tracked
the trial-by-trial changes in the decision variables

estimated from the RL model. These findings suggest
that a reinforcement-guided learning mechanism might
be at work during both reward-related and perceptual
learning.

Confidence

The previous section highlighted that the process of
perceptual decision-making can undergo long-term
optimization, which ultimately serves to fine-tune
behavior and maximize reward. It was suggested that
a potential mechanism by which perceptual learning is
facilitated is the ability of a system to estimate the reli-
ability of a perceptual decision [65]. In addition to
providing an evaluation of the decision process itself,
this sense of confidence in our judgments can also help
predict choice outcome and ultimately motivate
learning and inform future choices. Correspondingly,
there has been growing interest in understanding the
neural basis of decision confidence, in both the NHP
and the human literature [66e68].

In particular, the relationship between confidence
and the decision process has been the subject of some
debate. Generally, decision confidence has been stud-
ied as a metacognitive (i.e., postdecisional) process.
For instance, Fleming et al. [69] examined the spatial
correlates of metacognition by asking subjects to
perform a face/house categorization task and rate their
confidence in their decisions after each choice. fMRI ac-
tivity in the rostrolateral prefrontal cortex (RLPFC) was
found to correlate with confidence at the time of rating,
and was enhanced during confidence rating compared
to a control task. Importantly, the strength of the rela-
tionship between RLPFC activity and confidence re-
ports was predictive of subjects’ ability to evaluate
their own performance (i.e., metacognitive ability).
Relatedly, Fleming et al. [70] demonstrated that meta-
cognitive ability is correlated with the gray matter vol-
ume of the anterior portion of the prefrontal cortex, as
well as the white matter projections to this region.
While these studies have addressed important ques-
tions regarding the spatial characteristics of choice con-
fidence in the postdecision period, it is not clear
whether confidence might be arising earlier in time,
during the decision process itself.

Evidence from animals suggests that information
about confidence becomes available earlier in the deci-
sion stream [71,72]. Specifically, in the primate and rat
brains, choice confidence appears to develop simulta-
neously with the decision process and is encoded by
the same neural populations that form the decision.
Only a handful of studies have tried to characterize
choice confidence in the human brain as it develops in
time during the decision process. In Zizlsperger et al.
[73], subjects performed an RDK task and rated their
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confidence in the decision while EEG data were
recorded. Event-related potentials locked to stimulus
onset began to show a separation between high- and
low-confidence trials soon after stimulus presentation,
and almost concomitant with modulation by task diffi-
culty, a finding consistent with a decisional account of
confidence.

In line with this account, Gherman and Philiastides
[10] used EEG to study the temporal characteristics of
choice confidence during a delayed-response face/car
categorization task that rewarded correct trials. On
half of the trials, before indicating their choice, subjects
were allowed to opt out of the task for a smaller but
certain reward. This manipulation encouraged subjects
to opt out of the decision when they were uncertain of
their choice or ignore this option and commit to a
choice when they were certain. A comparison between
the neural signals for certain versus uncertain choices
showed that discrimination between the two
conditions increased gradually after the stimulus was
presented, peaking before subjects initiated a response.
These confidence-related signals exhibited a ramp-like
response profile (Fig. 11.3C) and had a spatial topog-
raphy consistent with the process of evidence accumu-
lation defined earlier (compare Fig. 11.2A with
Fig. 11.3C) [11]. Importantly, the accumulation rate of
this activity was predictive of confidence on a trial-
by-trial basis, even when difficulty effects were
controlled for, offering strong evidence that confidence
develops continuously as the decision process
unfolds. Taken together, these studies suggest that con-
fidence arises early after stimulus presentation and
thus may help shape the course of the decision process
itself.

One hypothesis as to how this can be achieved is
that confidence may act as a learning signal, shaping
subsequent decisions and optimizing performance.
For instance, Hebart et al. [65] found that during an
RDK task, fMRI activation increased with confidence
in the ventral striatum. Using a connectivity analysis,
they demonstrated a flow of information from areas
of the brain correlating with the decision (i.e., parietal
and prefrontal sites) to the ventral striatum, suggesting
confidence computed within this region is derived
from, and computed in parallel with, the ongoing deci-
sion signal. The authors proposed a potential role of the
ventral striatum in confidence-driven learning, sug-
gesting that introspective signals (e.g., the feeling of
reward associated with a choice) serve to reinforce
optimal behavior on subsequent choices. Thus, in this
sense, confidence may be thought of as an implicit
reward signal, which is being propagated back to the
decision systems to optimize the dynamics of the
decision process, possibly by means of an RL-like
mechanism.

Neuromodulation

Although much effort is being invested in assessing
the various influences on perceptual decision-making
at the systems level, less attention has been devoted to
understanding how neurotransmission affects the deci-
sion process. There has been some evidence pointing
to a potential role of the neurotransmitter dopamine in
the efficiency of information processing. MacDonald
et al. [74] examined the influence of aging-related
decline in dopaminergic activity on cognitive process-
ing, using a speeded reaction-time task that relied on ex-
ecutive control. The authors demonstrated a tight link
between the decrease in D1 receptor binding potential
and intraindividual trial-to-trial variability in reaction
time, a measure commonly used to indicate the preci-
sion of information processing [75]. Interestingly,
another study by Ratcliff et al. [76] demonstrated that
age-related decreases in processing efficiency during a
brightness discrimination task were linked to the rate
of decision-related evidence accumulation. Together,
the two studies suggest that disruptions in dopami-
nergic activity can have an influence on the efficiency
of decision formation; however, a direct link between
the two is yet to be demonstrated empirically.

Additional evidence for the involvement of dopamine
in the perceptual decision process comes from research
on molecular genetics. The catechol-O-methyltransferase
(COMT) protein, which metabolizes catecholamine neu-
rotransmitters, has been shown to play a role in regu-
lating prefrontal dopamine [77], and may affect
processing in various decision-making centers. Saville
et al. [78] demonstrated that Met/Met carriers of the
COMT Val158Met polymorphism showed greater intra-
subject variability during an n-back reaction-time task,
both in behavior (response time) and in the latency of
the P3b event-related potential, compared against Val/
Val carriers. The P3b component, which has often been
associated with decision-related processes [79], has been
argued to reflect the formation of the perceptual decision
itself [11,35,80]. Together, these findings suggest a poten-
tial link between COMT-related individual differences in
dopaminergic activity and decision formation.

Dopaminergic activity may also have an indirect in-
fluence on the perceptual decision, via its involvement
in reward-related activity. Nagano-Saito et al. [81] tested
the effect of reward-related dopaminergic activity on vi-
sual perceptual discrimination by temporarily hindering
dopamine transmission in healthy subjects. Specifically,
participants performed an RDK task in which cues pre-
sented prior to each trial informed them on the availabil-
ity of a reward for a correct response. Behaviorally,
availability of reward led to increased decision thresh-
olds (as inferred using an accumulation-to-bound
model), suggesting subjects prioritized accuracy over

II. HUMAN STUDIES ON MOTIVATION, PERCEPTUAL, AND VALUE-BASED DECISION-MAKING

11. SPATIOTEMPORAL CHARACTERISTICS AND MODULATORS OF PERCEPTUAL DECISION-MAKING IN THE HUMAN BRAIN144



speed on these trials. During the anticipatory period
leading to stimulus presentation, fMRI activation was
greater for rewarded trials in the ventral striatum and
prefrontal cortex, and interestingly, the magnitude of
the activation was positively correlated with the
threshold of the impending decision. Crucially,
decreasing dopaminergic transmission eliminated both
the blood oxygen level-dependent activation and its cor-
relation with the decision threshold, pointing to a causal
role in decision formation.

New insights on the neuromodulation of perceptual
decision may also be gained from the study of pupil
size changes across the time course of the decision pro-
cess. Pupil size fluctuations in conditions of constant illu-
mination are thought to reflect arousal state and have
been shown to correlate with activity in the locus coeru-
leus, the center of the neuroadrenergic system [82] (for
a review, see Aston-Jones and Cohen [83]). In one such
study, Murphy et al. [84] demonstrated that spontaneous,
stimulus-independent fluctuations in pupil diameter dur-
ing an RDK task could be explained by the variability in
the accumulation of decision evidence, a parameter
derived by fitting a diffusion model to the behavioral
data. Specifically, slow increases in pupil size, reflective
of heightened arousal state, were associated with greater
variability in the rate of evidence accumulation.

Similarly, De Gee et al. [85] measured pupil size fluc-
tuations while subjects performed a visual detection task
wherein they determined the presence (or absence) of
low-contrast grating stimuli. Authors demonstrated
that pupil dilation predicted subjects’ behavior (i.e.,
whether they made a “present” vs “absent” response),
and more importantly, it was best explained by a sus-
tained component that persisted throughout the deci-
sion phase (i.e., starting at stimulus onset and ending
when the subject made a response), suggesting pupil
dilation contains information about the formation of
the perceptual decision. As has been previously postu-
lated by theoretical modeling work [86,87], it is plausible
that the perceptual decision process may rely on norad-
renergic modulation mediated by the locus coeruleus;
however, this is still open to further investigation. The
increase in availability of effective, transient, and nonin-
vasive techniques for studying neuromodulatory sys-
tems in humans (e.g., amino acid challenge and
depletion techniques, see Ref. [88]) may offer new op-
portunities for further understanding of their roles in
perceptual decision-making.

CONCLUSION

In this chapter, we provided an overview of the gen-
eral neurobiological principles guiding perceptual
decision-making and reviewed the influence of various

modulators on the process of decision formation. We
also discussed how these influences could be under-
stood in terms of changes in parameters of sequential
samplingmodels of decision-making. Finally, we offered
a general discussion on how the influence of these deci-
sion modulators can be thought of in the framework of
reward maximization, whereby the perceptual
decision-making system adjusts to adaptively optimize
behavior. This perspective highlights possible future
research directions into the role of reinforcement-
guided learning, not only in reward- and value-based
decision-making, but also in our understanding of
perceptual decision-making.
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